397 research outputs found

    Inference in supervised spectral classifiers for on-board hyperspectral imaging: An overview

    Get PDF
    Machine learning techniques are widely used for pixel-wise classification of hyperspectral images. These methods can achieve high accuracy, but most of them are computationally intensive models. This poses a problem for their implementation in low-power and embedded systems intended for on-board processing, in which energy consumption and model size are as important as accuracy. With a focus on embedded anci on-board systems (in which only the inference step is performed after an off-line training process), in this paper we provide a comprehensive overview of the inference properties of the most relevant techniques for hyperspectral image classification. For this purpose, we compare the size of the trained models and the operations required during the inference step (which are directly related to the hardware and energy requirements). Our goal is to search for appropriate trade-offs between on-board implementation (such as model size anci energy consumption) anci classification accuracy

    GPU-friendly neural networks for remote sensing scene classification

    Get PDF
    Convolutional neural networks (CNNs) have proven to be very efficient for the analysis of remote sensing (RS) images. Due to the inherent complexity of extracting features from these images, along with the increasing amount of data to be processed (and the diversity of applications), there is a clear tendency to develop and employ increasingly deep and complex CNNs. In this regard, graphics processing units (GPUs) are frequently used to optimize their execution, both for the training and inference stages, optimizing the performance of neural models through their many-core architecture. Hence, the efficient use of the GPU resources should be at the core of optimizations. This letter analyzes the possibilities of using a new family of CNNs, denoted as TResNets, to provide an efficient solution to the RS scene classification problem. Moreover, the considered models have been combined with mixed precision to enhance their training performance. Our experimental results, conducted over three publicly available RS data sets, show that the proposed networks achieve better accuracy and more efficient use of GPU resources than other state-of-the-art networks. Source code is available at https://github.com/mhaut/GPUfriendlyRS

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an

    Full text link
    Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð¥with constraintsð ð 𥠥 ðandð´ð¥ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis

    Search for heavy resonances decaying to two Higgs bosons in final states containing four b quarks

    Get PDF
    A search is presented for narrow heavy resonances X decaying into pairs of Higgs bosons (H) in proton-proton collisions collected by the CMS experiment at the LHC at root s = 8 TeV. The data correspond to an integrated luminosity of 19.7 fb(-1). The search considers HH resonances with masses between 1 and 3 TeV, having final states of two b quark pairs. Each Higgs boson is produced with large momentum, and the hadronization products of the pair of b quarks can usually be reconstructed as single large jets. The background from multijet and t (t) over bar events is significantly reduced by applying requirements related to the flavor of the jet, its mass, and its substructure. The signal would be identified as a peak on top of the dijet invariant mass spectrum of the remaining background events. No evidence is observed for such a signal. Upper limits obtained at 95 confidence level for the product of the production cross section and branching fraction sigma(gg -> X) B(X -> HH -> b (b) over barb (b) over bar) range from 10 to 1.5 fb for the mass of X from 1.15 to 2.0 TeV, significantly extending previous searches. For a warped extra dimension theory with amass scale Lambda(R) = 1 TeV, the data exclude radion scalar masses between 1.15 and 1.55 TeV

    Search for supersymmetry in events with one lepton and multiple jets in proton-proton collisions at root s=13 TeV

    Get PDF
    Peer reviewe

    Measurement of the top quark mass using charged particles in pp collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Search for anomalous couplings in boosted WW/WZ -> l nu q(q)over-bar production in proton-proton collisions at root s=8TeV

    Get PDF
    Peer reviewe

    Inclusive search for supersymmetry using razor variables in pp collisions at root s=13 TeV

    Get PDF
    Peer reviewe

    Search for electroweak production of charginos and neutralinos in multilepton final states in proton-proton collisions at root s=13 TeV

    Get PDF
    Results are presented from a search for the direct electroweak production of charginos and neutralinos in signatures with either two or more leptons (electrons or muons) of the same electric charge, or with three or more leptons, which can include up to two hadronically decaying tau leptons. The results are based on a sample of protonproton collision data collected at p s = 13TeV, recorded with the CMS detector at the LHC, corresponding to an integrated luminosity of 35.9 fb1. The observed event yields are consistent with the expectations based on the standard model. The results are interpreted in simpli ed models of supersymmetry describing various scenarios for the production and decay of charginos and neutralinos. Depending on the model parameters chosen, mass values between 180GeV and 1150 GeV are excluded at 95% CL. These results signi cantly extend the parameter space probed for these particles in searches at the LHC. In addition, results are presented in a form suitable for alternative theoretical interpretations.Sponsoring Consortium for Open Access Publishing in Particle Physic

    Deep&Dense Convolutional Neural Network for Hyperspectral Image Classification

    Get PDF
    Deep neural networks (DNNs) have emerged as a relevant tool for the classification of remotely sensed hyperspectral images (HSIs), with convolutional neural networks (CNNs) being the current state-of-the-art in many classification tasks. However, deep CNNs present several limitations in the context of HSI supervised classification. Although deep models are able to extract better and more abstract features, the number of parameters that must be fine-tuned requires a large amount of training data (using small learning rates) in order to avoid the overfitting and vanishing gradient problems. The acquisition of labeled data is expensive and time-consuming, and small learning rates forces the gradient descent to use many small steps to converge, slowing down the runtime of the model. To mitigate these issues, this paper introduces a new deep CNN framework for spectral-spatial classification of HSIs. Our newly proposed framework introduces shortcut connections between layers, in which the feature maps of inferior layers are used as inputs of the current layer, feeding its own output to the rest of the the upper layers. This leads to the combination of various spectral-spatial features across layers that allows us to enhance the generalization ability of the network with HSIs. Our experimental results with four well-known HSI datasets reveal that the proposed deep&dense CNN model is able to provide competitive advantages in terms of classification accuracy when compared to other state-of-the-methods for HSI classification
    corecore